This history of streaming can be viewed in three separate time lines, one relating to streaming technologies, the next to connection speed and the target device, and the final relating to the growth of third party streaming service providers. Let’s look at each in turn.

Streaming Technology
Real Networks pioneered the streaming audio and video markets, broadcasting the first audio event over the Internet – a baseball game between the Yankees and Seattle Mariners — in 1995, launching the first streaming video technology in 1997. According to some accounts, by 2000, more than 85% of streaming content on the Internet in Real format.

Despite this success, problems arose because Real’s primary business model depended upon the sale of servers, and Microsoft and Apple were giving those products away. As servers from Microsoft and Apple became more capable, Real’s sales inevitably eroded. Or perhaps it was Microsoft’s anti-competitive activities, for which Microsoft paid Real $761 million in a legal settlement in 2005.

In addition, consumers started balking at the intrusiveness of the free Real Player, which installed multiple background processes, made itself the default player for all multimedia content and continuously nagged the user to upgrade. A player that once had been absolutely essential was now being uninstalled in droves, and not installed on newer computers.

The Microsoft Era
Microsoft dominated the computer landscape, giving the Windows Media Player a dominant share of available desktops and notebooks, and from the early 2000 to around 2007, Windows Media was the most widely used format on the Internet and in most company intranets. However, Windows Media Player had a non-customizable interface and depended upon a third party plug-in to play on the Mac, which was just starting to begin its resurgence.

During this same period, web site design was transitioning from HTML to Flash, which offered much greater interactivity and design flexibility. Though Flash had a video component, the initial codecs offered poor video quality and sketchy audio/video synchronization. That changed when Macromedia licensed the On2 VP6 codec in 2005.

The Flash Era
Via VP6, Macromedia (and then Adobe, who acquired Macromedia in 2005), could match Microsoft’s video quality in a brandable player that could be integrated with the rest of a Flash-based site, and was truly cross platform and near ubiquitous. This proved irresistible to most broadcast and entertainment sites, where Microsoft’s share in these markets dropped to single digits by 2010. Microsoft released a Flash competitor called Silverlight in 2007 to stem the tide, but the player never achieved the penetration necessary to convince Flash users to adopt it.

Then, in April 2010, Apple shipped the iPad, which didn’t support Adobe Flash, focusing lots of attention on HTML5, the technology that Apple uses for video playback on its iOS devices. Briefly, rather than using a plug-in based player like Flash, Windows Media or Silverlight, HTML5 uses a player that’s native to the browser to play back the video file.

The Rise of HTML5 Video
HTML5 is the latest specification of HTML (hypertext markup language), the language used to create websites. The specification is currently under review by the World Wide Web Consortium (W3C) and Web Hypertext Application Technology Working Group (WHATWG), and is set to be finalized in 2014. In early 2011, the W3C and WHATWG announced that the specification would be henceforth known simply as HTML; for the sake of clarity, however, we’ll continue to refer to it here as HTML5.

For HTML5 video to function, the user must have an HTML5-compatible browser, and that browser must support the codec used to compress the file. By the start of 2011, only about half of the installed base of browsers was HTML5 compatible. Though that will change with the release of Internet Explorer 9, HTML5 won’t achieve the 96% penetration enjoyed by Flash for many years to come.

In addition, codec support within those browsers was split. Mozilla Firefox, Google Chrome, and the Opera browser supporting Google’s WebM, but not H.264. Apple Safari (and all iOS devices) is compatible only with H.264. Internet Explorer 9 will ship with an H.264 player, but not a WebM player, though it will play WebM files if the codec is otherwise installed on the user’s computer. While not an absolute show-stopper, this split means that organizations seeking to be fully HTML5 compatible must support at least two codecs.

In addition, HTML5 doesn’t yet offer features like adaptive streaming, digital rights management, live broadcasting, and many others that are proven components of Flash, Silverlight, Windows Media, and QuickTime. Advanced features like peer-to-peer delivery and multicasting, launched by Adobe with Flash Media Server 4, are not yet on the HTML5 drawing board.

In the short term, HTML5 is most appropriately viewed as a solution for iOS and perhaps other mobile devices, but not as a replacement for Flash or Silverlight for general-purpose computers. However, web sites can certainly implement HTML5 today with fallback to Flash if the viewer connects with a non-HTML5-compatible browser, and any site that extensively uses Flash or Silverlight should at least be thinking about how to integrate HTML5 support into their future plans.

Connection Speed and Target Device
Back in 1997 when streaming video launched, the target market included desktop and notebook users connecting via modem. Today, the range of target players is much more diverse, including low-power mobile devices, set-top boxes, and powerful computers connecting via DSL or cable, and many of which are connected to HDTV monitors. To reach these devices, streaming producers must customize streams for delivery via 3G (or slower) networks as well as 50Mbps broadband.

The disparity in playback power and connection speed has spawned technologies like adaptive streaming, where a single video is encoded into multiple data rates and sizes, spanning the target viewer community. A stream appropriate for playback device and connection speed is transmitted and adaptively adjusted to changing connection conditions and available CPU.

Often these target devices support different streaming technologies, as with iOS devices with HTML5 and computers with Flash. To support the expanding range of viewers, many web sites support multiple streaming technologies, with many producing adaptive Flash streams for computer playback and H.264 streams for iOS devices.

From DIY to OVP
In the early days of the streaming media market, the mantra for virtually all companies who distributed streaming media was “do it yourself” (DIY). That is, companies encoded their videos, created their player, hosted their streams, and maintained the streaming server that distributed the streams. This was possible because there was one de facto technology, however it evolved over time, and a relatively homogeneous target user.

As you’ve read, however, the streaming media market has become much more complicated, with competing technologies like HTML5 and Flash, and a much more diverse universe of connection speeds and playback platforms. The ability to harvest effective marketing data from streaming media consumers has also increased exponentially. This complexity has increased both the CAPEX and personnel cost of effectively delivering streaming video.

As a result, many organizations are turning to online video platform (OVP) providers like Brightcove, Sorenson, and Ooyala to serve as turnkey streaming providers. Operationally, you upload your videos to the OVP, which encodes them into the formats necessary to serve to your target viewers. The OVP provides customizable players for a range of target platforms, including Flash, HTML5, iOS, and others, and embed codes for integrating the player into your web site. The OVP hosts the necessary servers for delivering the streaming media to the consumer and also provides media management and analytics packages.

Interestingly, a number of companies also use user-generated content (UGC) sites like YouTube and Vimeo for a subset of these services. For example, many of the videos presented on IBM’s website are hosted by YouTube. This approach has multiple benefits, including decreased CAPEX and personnel costs associated with hosting the video. In addition, since YouTube is developing their player for millions of streaming producers, they can quickly incorporate new technologies. For example, after the launch of the Apple iPad, YouTube was one of the first services to support it, allowing IBM to deliver videos to the new device simply by updating their embed code.

IBM’s videos are also exposed to the YouTube viewing community, with impressive results. For example, as of early March 2011, on the IBM Smarter Planet YouTube channel, IBM had accumulated more than 3,757 subscribers and more than 2 million video views. The most popular video, “IBM and the Jeopardy Challenge,” had been viewed 613,849 times. While these numbers pale next to the raw exposure of TV advertising, these are all opt-in viewers who chose to watch the videos, and the cost of the YouTube channel is a tiny fraction of television advertising.